Prof: Nefzi Chokri Nombres complexes

Niveau: 4 Sc.Exp

2020/2021

Exercice 1

Dans le plan complexe muni d'un repère orthonormé $(O\vec{u}, \vec{v})$, on considère les points A, B et C d'affixes respectives 1 - i, -2 et 2 + 2i.

- 1 Placer les points A, B et C dans le repère (O, \vec{u}, \vec{v}) .
- \bigcirc Montrer que le triangle ABC est isocèle et rectangle en A.
- 3 Déterminer l'affixe du point D pour que ABDC soit un carré.

Exercice 2

On considère les nombres complexes $z_1 = 1 + i$, $z_2 = \sqrt{3} - i$ et $Z = z_1 z_2$.

- 1 Déterminer l'écriture exponentielle de chacun des nombres complexes z_1, z_2 et Z.
- \bigcirc Donner l'écriture cartésienne de Z.
- 3 En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 3

Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A et B d'affixes respectives $z_A = \frac{-1 + i\sqrt{3}}{2}$ et $z_B = \frac{\sqrt{3} + i}{2}$.

- (1) (a) Ecrire sous forme exponentielle chacun des nombres complexes z_A et z_B .
 - **(b)** Placer les points A et B dans le repère (O, \vec{u}, \vec{v}) .
- **2** On désigne par M le point d'affixe $z_M = z_A + z_B$.
 - (a) Montrer que le quadrilatère OAMB est un carré puis placer le point M.
 - **b** Donner l'écriture trigonométrique de z_M .
 - © Donner alors les valeurs exacte de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.

Exercice 4

- Soit θ un réel de l'intervalle $[0, 2\pi[$. Mettre sous forme exponentielle les nombres complexes $z_1 = (1+i)e^{i\theta}$ et $z_2 = (1-i)e^{i\theta}$.
- 2 Dans le plan muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B, M_1 et M_2 d'affixes respectives $e^{i\theta}$, $2e^{i\theta}$, z_1 et z_2 .
 - (a) Montrer que A est le milieu du segment $[M_1M_2]$.
 - **b** Vérifier que $\frac{z_1}{z_2} = i$ et déduire que OM_1BM_2 est un carré.

Exercice 5

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On désigne par A, B et C les points d'affixes respectives $2, 1 - e^{i\frac{\pi}{3}}$ et $1 + e^{i\frac{\pi}{3}}$.

1 a Montrer que pour tout réel θ , $1 + e^{i\theta} = 2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}}$ et $1 - e^{i\theta} = -2i\sin\frac{\theta}{2}e^{i\frac{\theta}{2}}$.

- **(b)** Ecrire z_B et z_C sous forme exponentielle.
- 2 a Calculer $\frac{z_B}{z_C}$ et en déduire que $\overrightarrow{OB} \perp \overrightarrow{OC}$.
 - **(b)** Montrer que OBAC est un rectangle.

Exercice 6

Dans le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points M et N d'affixes respectives $z_M = e^{i\theta} + 1$ et $z_N = e^{i\theta} - 1$, où θ est un réel de l'intervalle $]0, \pi[$.

- 1 Ecrire z_M et z_N sous forme exponentielle.
- (2) (a) Montrer que $\frac{z_N}{z_M} = i \tan \frac{\theta}{2}$.
 - f b Déduire la nature du triangle ABC.
- **3** Déterminer l'ensemble décrit par le point M lorsque θ varie dans l'intervalle $]0,\pi[$.

Exercice 7

Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On désigne par $\mathscr C$ le cercle de centre O et de rayon 1 et par I et A les points d'affixes respectives 1 et $a=\sqrt{3}+i$.

- \bigcirc Donner la forme exponentielle de a.
 - **b** Construire le point A.
- 2 Soit B le point d'affixe $b = \frac{a-1}{1-\overline{a}}$.
 - (a) Vérifier que $b\bar{b}=1$. En déduire que le point B appartient au cercle \mathscr{C} .
 - **(b)** Montrer que $\frac{b-1}{a-1}$ est un réel. En déduire que les points A, B et I sont alignés.
 - © Placer le point B dans le repère (O, \vec{u}, \vec{v}) .
- 3 Soit θ un argument du nombre complexe b.

Montrer que
$$\cos \theta = \frac{2\sqrt{3} - 3}{5 - 2\sqrt{3}}$$
 et $\sin \theta = \frac{2 - 2\sqrt{3}}{5 - 2\sqrt{3}}$

Exercice 8

- 1 Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points A, B et C les points d'affixes respectives $z_A = i, z_B = 1 + i\sqrt{3}$ et $z_C = -1$. Ecrire z_A et z_B sous forme exponentielle.
- 2 Pour tout point M d'affixe $z \neq i$, on associe le point M' d'affixe $z' = \frac{iz+i}{z-i}$. Déterminer l'ensemble E des points M d'affixe z tels que z' est réel.
- (3) (a) Montrer que $|z'| = \frac{CM}{AM}$.
 - **b** En déduire que lorsque M décrit la médiatrice du segment [AC], le point M' décrit un cercle $\mathscr C$ que l'on précisera.

Exercice 9

Soient les nombres complexes $z_1 = \sqrt{2}e^{i\frac{\pi}{4}}$ et $z_2 = 1 + i\sqrt{3}$.

1 a Ecrire z_1 sous forme algébrique.

- **b** Ecrire z_2 sous forme exponentielle.
- 2 Dans le plan \mathscr{P} muni d'un repère orthonormé direct $(O\vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives $z_A = \sqrt{2}z_1$ et $z_B = i\overline{z_2}$.
 - (a) Montrer que le triangle OAB est isocèle.
 - **b** Ecrire $\frac{z_A}{z_B}$ sous forme cartésienne puis sous forme exponentielle. En déduire une mesure de l'angle $(\overrightarrow{OB}, \overrightarrow{OA})$.
 - © Donner les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 3 Pour tout point $M(z) \in \mathscr{P} \setminus \{B\}$, on associe le point M'(z') telle que $z' = \frac{z z_A}{z z_B}$.
 - (a) Déterminer l'ensemble E des points M lorsque M' décrit l'axe (O, \vec{u}) .
 - f b Déterminer l'ensemble F des points M' lorsque M décrit la médiatrice du segment [AB].

Exercice 10

Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On donne les nombres complexes $a = 3 + i\sqrt{3}$ et $b = -\sqrt{3} + 3i$.

- \bigcirc Ecrire a et b sous forme exponentielle.
- 2 a Placer les points A et B d'affixes respectives a et b puis le point C d'affixe c = a + b.
 - **b** Montrer que le triangle OAB est rectangle et isocèle en O.
 - © En déduire que le quadrilatère OACB est un carré.
- 3 a Justifier que $OC = 2\sqrt{6}$ et que $(\overrightarrow{u}, \overrightarrow{OM}) \equiv \frac{5\pi}{12} [2\pi]$.
 - **b** Déterminer les valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.
 - © Montrer que c^{12} est un réel négatif.

Exercice 11

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B et C d'affixes respectives $z_A = 1 - i$, $z_B = 2 + \sqrt{3} + i$ et $z_C = 2$. Soit $\mathscr C$ le cercle de centre C et de rayon 2.

- - **b** Placer les points A et C. Construire alors le point B.
- **2** a Ecrire z_A sous forme exponentielle.
 - **b** Ecrire $\frac{z_B}{z_A}$ sous forme algébrique, en déduire que $\frac{z_B}{z_A} = (1 + \sqrt{3})e^{i\frac{\pi}{3}}$.
 - \bigcirc En déduire la forme exponentielle de z_B .
 - **d** Déterminer alors la valeur exacte de $\sin \frac{\pi}{12}$.
- **3** Déterminer l'ensemble des points M(z) du plan tels que $|z| = |\overline{z} 1 i|$.
- 4 Pour tout point M d'affixe z ($z \neq 2$), on associe le point M' d'affixe z' telle que $z' = -3i\left(\frac{z-1+i}{z-2}\right)$.
 - (a) Déterminer l'ensemble des points M(z) tels que z' soit réel.

- **(b)** Montrer que $OM' = 3\frac{AM}{CM}$
- ${f c}$ En déduire que lorsque M décrit la médiatrice de [AC], le point M' décrit un cercle que l'on déterminera.

Exercice 12

1 Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points E et F d'affixes respectives 1 et i.

On désigne par \mathscr{C}_1 et \mathscr{C}_2 les cercles de centre respectives E et F et de même rayon 1. Soit θ un réel de l'intervalle $[0, 2\pi[$, M le point d'affixe $1 + e^{i\theta}$ et N le point d'affixe $i(1 + e^{i\theta})$.

- (a) Calculer les affixes des vecteurs \overrightarrow{EM} et \overrightarrow{FN} .
- **b** Montrer que lorsque θ varie dans $[0, 2\pi[$, M varie sur \mathscr{C}_1 et N varie sur \mathscr{C}_2 .
- \bigcirc Montrer que les droites (EM) et (FN) sont perpendiculaires.
- 2 Soit P le point d'affixe $z_P = (1 i) \sin \theta \ e^{i\theta}$.
 - (a) Montrer que $\frac{aff(\overrightarrow{EP})}{aff(\overrightarrow{EM})} = \sin \theta \cos \theta$ et calculer $\frac{aff(\overrightarrow{FP})}{aff(\overrightarrow{FN})}$.
 - **b** Montrer alors P est le point d'intersection des droites (EM) et (FN).

Exercice 13

- **1** Soit dans \mathbb{C} l'équation $(E): z^2 (\sqrt{2} + 2 + i\sqrt{2}) z + 2(\sqrt{2} + i\sqrt{2}) = 0.$
 - (a) Vérifier que 2 est une solution de (E).
 - **b** Déduire l'autre solution de (E).
- 2 Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A et B d'affixes respectives $z_A = 2$ et $z_B = \sqrt{2} + i\sqrt{2}$.
 - (a) Mettre z_B sous forme exponentielle.
 - **b** Placer le point B dans le repère (O, \vec{u}, \vec{v}) .
- 3 Soit C le point d'affixe $z_C = 2 + z_B$.
 - a Placer le point C dans le repère (O, \vec{u}, \vec{v}) .
 - **b** Montrer que le quadrilatère OACB est un losange.
 - © Montrer que $z_C = 2\cos\frac{\pi}{8}e^{i\frac{\pi}{8}}$, en déduire que $\tan\frac{\pi}{8} = \sqrt{2} 1$.

Exercice 14

- 1 Vérifier que $ie^{i\frac{\pi}{6}} = \left(e^{i\frac{\pi}{3}}\right)^2$.
- **2** Résoudre dans \mathbb{C} l'équation $(E): z^2 2e^{i\frac{\pi}{12}}z + (1-i)e^{i\frac{\pi}{6}} = 0$.
- (3) Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives $e^{i\frac{\pi}{3}}, e^{i\frac{\pi}{12}}$ et $e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{12}}$.
 - $oxed{a}$ Montrer que le quadrilatère AOCB est un losange.
 - **(b)** Placer les points A, B et C dans le repère (O, \vec{u}, \vec{v}) .
 - ${\color{red} {\bf c}}$ Calculer l'aire du losange OACB.