EXERCICE 1

On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$. On considère les nombres complexes z_1, z_2 et z_3 définis par :

$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = e^{-i\frac{\pi}{4}}$ et $z_3 = e^{i\frac{\pi}{12}}$.

- Déterminer l'écriture exponentielle de z₁.
- **2.** Déterminer l'écriture algébrique de z_2 .
- **3.** Démontrer que $z_1 \times z_2 = 2z_3$.
- En déduire l'écriture algébrique de z₃.

5. En déduire que
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{-\sqrt{2} + \sqrt{6}}{4}$.

Exercice 2 QCMs

- 1. La forme exponentielle du nombre complexe z = -5 + 5i est :
 - **a.** $z = 5e^{i\frac{3\pi}{4}}$
 - **b.** $z = 5\sqrt{2}e^{i\frac{3\pi}{4}}$
 - c. $z = 5e^{-i\frac{\pi}{4}}$
 - **d.** $z = 5\sqrt{2}e^{-i\frac{\pi}{4}}$
- **2.** Si $z_1 = 2\sqrt{2}e^{i\frac{3\pi}{4}}$ et $z_2 = \sqrt{2}e^{-i\frac{\pi}{3}}$, alors le produit $z_1 \times z_2$ est un nombre complexe :
 - **a.** de module 4 et dont un argument est $\frac{2\pi}{7}$
 - **b.** de module $2\sqrt{2}$ et dont un argument est $\frac{5\pi}{12}$
 - c. de module 4 et dont un argument est $\frac{5\pi}{12}$
 - **d.** de module $2\sqrt{2}$ et dont un argument est $\frac{13\pi}{12}$
- 3. Le nombre complexe $\frac{\sqrt{2}-i\sqrt{2}}{\sqrt{2}+i\sqrt{2}}$ est égal à :
 - **a.** 1
 - **b.** i
 - **c.** -1
 - **d.** –i
- **4.** Le nombre complexe z de module $2\sqrt{3}$ et dont un argument est $\frac{2\pi}{3}$ a pour forme algébrique :
 - **a.** $\sqrt{3} 3i$
 - **b.** $3 i\sqrt{3}$
 - **c.** $-\sqrt{3} + 3i$
 - **d.** $-3 + i\sqrt{3}$

ı	N
	٠

c. $2\sqrt{2}e^{i\frac{13\pi}{12}}$	a. $2\sqrt{2}e^{i\frac{11\pi}{12}}$
d. $1 - \sqrt{3} + 2i$	b. $(1+\sqrt{3})(-1+i)$

Le produit $z_1 \times z_2$ est égal à :

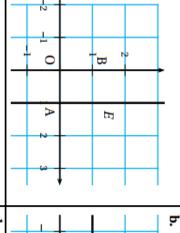
et d'argument $\frac{\pi}{2}$

ù i est le no	
mbre comp	
lexe de moo	$z_1 = \sqrt{2}e^{i\frac{\pi}{4}}$
lule	et
ù i est le nombre complexe de module 1 et d'argume	$z_2 = -\sqrt{3} + i$

•	
Considérons les deux nombres complexe	
ıs les	١.
deux	
non	
bres	
comple	
exe	Γ

	•	′ ∘		ıΒ
		, V		7
•		5		
		~	,	
			1	

lérc					
ns le	_1	O		,B	3
s deux					
non y		A		,	
ıbres		-2			
lérons les deux nombres complex		ω ,	,		
lex					



 Le plan est rapporté à un repère orthonormé (O, A, B). est représenté en gras par : L'ensemble E des images des nombres complexes z vérifiant la relation |z| =

1. On considère le nombre complexe $z = 3e^{-i\frac{\pi}{6}}$. La forme algébrique du nombre complexe z est:

t₩

a.
$$-\frac{3\sqrt{3}}{2} + \frac{3}{2}i$$
 b. $\frac{3\sqrt{3}}{2} - \frac{3}{2}i$ **c.** $\frac{3\sqrt{3}}{2} + \frac{3}{2}i$ **d.** $-\frac{3\sqrt{3}}{2} - \frac{3}{2}i$

b.
$$\frac{3\sqrt{3}}{2} - \frac{3}{2}i$$

c.
$$\frac{3\sqrt{3}}{2} + \frac{3}{2}$$

d.
$$-\frac{3\sqrt{3}}{2} - \frac{3}{2}$$

2. $z_1 = 1 + i\sqrt{3}$ et $z_2 = \sqrt{3} - i$. La forme exponentielle du nombre complexe $z_1 \times z_2$ est:

b.
$$-4e^{-i\frac{\pi}{6}}$$
 c. $2e^{i\frac{\pi}{6}}$

d.
$$4e^{i\frac{\pi}{2}}$$

2. La forme exponentielle du nombre complexe $z = -3 + i3\sqrt{3}$ est :

a.
$$3e^{i\frac{2\pi}{3}}$$

b.
$$6e^{i\frac{2\pi}{3}}$$

c.
$$6e^{-i\frac{2\pi}{3}}$$

d.
$$-6e^{-i\frac{2\pi}{3}}$$

3. On considère le complexe $z = \sqrt{2} - i\sqrt{2}$. Le nombre complexe z^2 est égal à :

a.
$$z^2 = 2$$

b.
$$z^2 = 4$$

a.
$$z^2 = 2$$
 b. $z^2 = 4$ **c.** $z^2 = -4$ **d.** $z^2 = -4i$

d.
$$z^2 = -4i$$