Chap 4 - La fonction exponentielle

I. Définition et propriétés de base :

1. Equation différentielle y' = y avec condition initiale y(0) = 1:

<u>Introduction</u>: voir le TD *La fonction exponentielle, ou les propriétés d'une fonction égale à sa dérivée*, qui fait partie du cours. On cherche toutes les fonctions qui soient égales à leur dérivée et qui envoient 0 en 1. Une seule fonction convient, on la nommera exponentielle.

<u>Théorème 1</u> : existence (admis) et unicité (démontré en TD) d'une solution

Il existe une et une seule fonction f dérivable sur \mathbb{R} telle que $\begin{cases} f' = f \\ f(0) = 1 \end{cases}$. Cette fonction est appelée **fonction exponentielle**, et notée **exp** : $f(x) = \exp(x)$.

2. Propriétés de la fonction exponentielle :

- ♦ Par définition : exp est dérivable sur \mathbb{R} et exp' =
- ◆ Par définition : exp(0) =
- exp(1) est noté (\approx ), c'est un nombre irrationnel (comme π).
- ♦ Démontré en TD : exp ne s'annule jamais. Donc puisqu'elle est continue (car dérivable) et que $\exp(0) = 1 > 0$, alors elle est strictement positive : **pour tout** $x \in \mathbb{R}$, $\exp(x) > 0$.

Propriété 2: pour tous $x, y \in \mathbb{R}$:

- $\bullet \quad \exp(x+y) = \exp(x) \times \exp(y)$
- pour tout $n \in \mathbb{Z}$, $\exp(nx) = [\exp(x)]^n$. (vrai pour les entiers positifs **et** négatifs)

<u>Démonstration</u> (à connaitre)

Exemple 1 : écrire $\exp(3)$ et $\exp(-6)$ en fonction de e.

3. Notation e^x

<u>Définition 1:</u> Pour tout $n \in \mathbb{Z}$, $\exp(n) = [\exp(1)]^n = e^n$. On généralise cette notation vraie sur \mathbb{Z} en posant : pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$. On utilisera dorénavant cette notation.

<u>Propriété 3:</u> les propriétés de la fonction exponentielle s'énoncent ainsi plus facilement :

$$e^{x+y} = e^x \times e^y$$
 $e^{-x} = \frac{1}{e^x}$ $e^{x-y} = \frac{e^x}{e^y}$ $(e^x)^n = e^{nx}$

Exemple 2 : Simplifier les expressions $(e^{2x})^2 \times e^{-x}$, $(e^x + e^{-x})^2 - (e^x - e^{-x})^2$ et $\frac{(e^{6x-3})^2 \times e^{4x}}{e^{1-x}}$.

<u>Théorème 4:</u> Relation fonctionnelle caractéristique de la fonction exponentielle
La fonction exponentielle est la seule fonction dérivable sur IR, non nulle, qui vérifie $f(x+y) = f(x) \times f(y) \text{ et } f'(0) = 1.$

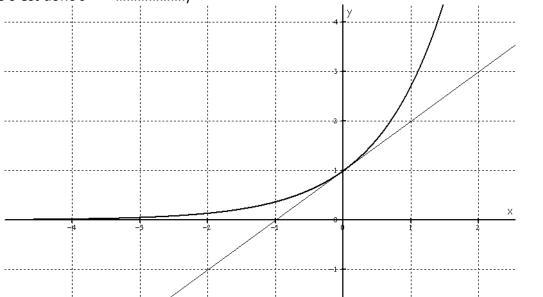
Démonstration :

II. Etude de la fonction exponentielle:

1. Sens de variation et limites :

Propriété 5:

- lacktriangle sens de variation : la fonction exponentielle estsur $\mathbb R$.
- <u>limites</u> $\lim_{x \to +\infty} e^x = \dots$ et $\lim_{x \to -\infty} e^x = \dots$
- Représentation graphique avec la tangente en 0 d'équation y = x + 1: (l'approximation affine de exp au voisinage de 0 est donc $e^x \approx \dots$)



<u>Démonstrations</u> (à connaitre)

Conséquences:

ullet Pour tout m strictement positif, l'équation $e^x=m$ a une unique solution dans $\mathbb R.$

(d'après le)

• Résolution d'équations/inéquations avec exp : on utilise $e^x = e^y \Leftrightarrow x = y$ et $e^x > e^y \Leftrightarrow x > y$

Exemple 3: Résoudre l'inéquation $e^{x+1} \le e^{2x}$.

Propriété 6: $\lim_{h\to 0} \frac{e^{h-1}}{h} = \exp'(0) = \dots$ (taux de variation de exp en en 0).

<u>Propriété 7</u>: indéterminée levées par croissance comparée : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ et $\lim_{x \to +\infty} xe^x = 0$.

Démonstration (à connaitre):

 $\underline{\text{Cons\'equence}:} \text{ pour tout } n \in \mathbb{N} \text{ , } \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \quad \text{et } \lim_{x \to -\infty} x^n e^x = 0$

Exemple 4: Déterminer $\lim_{x\to +\infty} \frac{e^x}{x^{1000}}$ et $\lim_{x\to +\infty} xe^{-x}$.

2. Fonction composée $x \mapsto e^{u(x)}$:

<u>Propriété 8 :</u> Soit u une fonction dérivable sur une intervalle I de $\mathbb R$. Alors la fonction e^u est dérivable sur I et $(e^u)' = u'e^u$

Exemple 5: dériver $f: x \mapsto e^{5x+2}$ sur \mathbb{R} et $g: x \mapsto e^{\frac{1}{x}}$ sur \mathbb{R}^* .